приращение аргумента

приращение аргумента
при́ріст арґуме́нту, збі́льшення арґуме́нту

Русско-украинский политехнический словарь. 2013.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "приращение аргумента" в других словарях:

  • Приращение функции — в точке функция обычно обозначаемая от новой переменной определяемая как Переменная называется приращением аргумента. В случае когда ясно о каком значении …   Википедия

  • дифференциальное исчисление — раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций. Производной функции у = f(х) называется предел отношения приращения Δу = у1 – у0 функции к приращению Δх = x1 – х0 аргумента при Δх …   Энциклопедический словарь

  • ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… …   Математическая энциклопедия

  • ГРАДИЕНТ — одно из основных понятий векторного анализа и теории нелинейных отображений. Градиентом скалярной функции векторного аргумента из евклидова пространства Е n наз. производная функции f(t).по векторному аргументу t, то есть n мерный вектор с… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛ — главная линейная часть приращения функции. 1) Действительная функция y = f{x )действительного переменного наз. дифференцируемой в точке х, если она определена в нек рой окрестности этой точки и если существует такое число А, что приращение (при… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций. Производной функции y = f(х) называется предел отношения приращения ?y = y1 y0 функции к приращению ?x = x1 x0 аргумента при ?x,… …   Большой Энциклопедический словарь

  • ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются производные, дифференциалы и их применения к исследованию свойств ф ций. Производной ф ции у = f(x) наз. предел отношения приращения дельта y = у1 y0 ф ции к приращению дельта х = х1 х0 аргумента при дельта х …   Естествознание. Энциклопедический словарь

  • Дифференциальное исчисление — Дифференциальное исчисление. Проведение касательной к графику функции y=f(x) в точке M. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций. Производной… …   Иллюстрированный энциклопедический словарь

  • ШТУРМА - ЛИУВИЛЛЯ ОБРАТНАЯ ЗАДАЧА — задача, в к рой требуется восстановить функцию (потенциал) q(x)по тем или иным спектральным характеристикам оператора А, порождённого дифференциальным выражением l[у] = y +q(x)yи нек рыми граничными условиями в гильбертовом пространстве L2(a, b) …   Математическая энциклопедия

  • ВАРИАЦИЯ — (лат. variatio, от variare, происш. от varius различный). 1) видоизменение, уклонение, разнообразие. 2) в музыке: изменение главной музыкальной темы разными переходами, с удержанием основной мелодии. 3) в математике: особого рода изменение… …   Словарь иностранных слов русского языка

  • Дифференциал (математич.) — Дифференциал (от лат. differentia ‒ разность, различие) в математике, главная линейная часть приращения функции. Если функция y = f (x) одного переменного х имеет при х = х0 производную, то приращение Dy = f (x0 + Dx) f (x0) функции f (x) можно… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»